
SCA Next Lessons Learned
and Impact Analysis

Raytheon Network Centric Systems
Jerry Bickle
Dec 1, 2011

.
Customer Success Is Our Mission is a registered trademark of Raytheon Company.

The Wireless Innovation Forum Conference
on Communications Technologies and
Software Defined Radio 2011

This document does not contain technical data
as defined by the International Traffic in Arms
Regulations, 22 CFR 120.10(a), and is therefore
authorized for publication.

Page 2 11/30/2011

Agenda
 SCA Re-Factored Core Framework (CF) IDL Impacts
 SCA Component IDL Impacts
 CORBA Profiles Impacts
 SCA Domain Profiles Impacts
 CF Implementation Impacts

Page 3 11/30/2011

SCA Re-Factored CF IDL Impacts
 SCA Re-Factored CF IDL Interfaces
 SCA Affected Components
 SCA Servant Impact
 SCA Re-Factored Benefit

Page 4

SCA Re-Factored CF IDL Interfaces
 Application Component Interfaces: Component Factory, Component

Manager, Resource
 Base Component Interfaces: Common Types, Component Identifier,

Controllable Component , Lifecycle, Port Accessor, Properties, Property
Set,

 Device Component Interfaces: Aggregate Device, Capacity Manager,
Device, Device Attributes, Executable Device, Loadable Device, Loadable
Object, Manageable Component

 Device Management Interfaces: Component Registry, Device Manager,
Device Manager Attributes, Full Component Registry,

 Domain Management Interfaces: Application, Application Deployment
Data, Application Types, Application Factory, Component Registry,
Domain Installation, Domain Manager, Event Channel Registry, Full
Component Registry, Full Manager Registry, Manager Registry, Manager
Release

 File Services Interfaces: File, File System, File Manager
 Platform Component Interfaces: Platform Types, Component Factory,

Component Manager, Resource

11/30/2011

Page 5

SCA Core Framework Interfaces

11/30/2011

class Core Framework IDL Relationships

«interface»
Ev entChannelRegistry

«interface»
DomainManager

«interface»
DomainInstallation

«interface»
PropertySet

«interface»
ComponentIdentifier

«interface»
ManagerRegistry

«interface»
ComponentRegistry

«interface»
Dev iceManager

«interface»
Dev iceManagerAttributes

«interface»
ManagerRelease

«interface»
PortAccessor

«interface»
ControllableComponent

«interface»
Dev ice

«interface»
CapacityManager

«interface»
LifeCycle

«interface»
TestableObject

«interface»
Resource

«interface»
Application

«interface»
ApplicationDeploymentData

«interface»
ApplicationFactory

«interface»
ComponentFactory

«interface»
LoadableDev ice

«interface»
Dev iceAttributes

«interface»
LoadableObject

«interface»
AggregateDev ice

«interface»
ExecutableDev ice

«interface»
ComponentManager

«interface»
File

«interface»
FileManager

«interface»
FileSystem

«interface»
FullComponentRegistry

«interface»
FullManagerRegistry

«interface»
ParentDev ice

«interface»
ManageableComponent

«uses»

+compositeDevice

+fileMgr

+fileSys

+compositeDevice

Page 6

SCA Affected Components
 If one wants to take advantage of the Re-Factored CF then the impact is

on the component ‘s servant class.
– Application Manager
– Application Factory
– Application Components: Assembly Controller, Resource, Application Component Factory
– Device Manager
– Domain Manager
– File Services: File, File System, File Manager.
– Platform Components: CF Service (Resource), Device, Loadable Device, Executable

Device, Platform Component Factory

11/30/2011

Page 7

SCA Component Hierarchy

11/30/2011

Page 8

SCA Servant Impact
Change Servant class from

Include “CFServer.idl”

To

Include “CFXXXServer.idl”

Where XXX is the CF interface name: Application, Resources, Device, Executable Device,

Device Manger, Domain Manager, etc.

 For Example: Include “CFDeviceServer.idl”

11/30/2011

Page 9

SCA Servant Impact (cont'd)
 To support backwards compatibility or to support re-factored

versus non re-factored CF one may add a compile directive
such as “SCA_REFACTORED“

#if defined(SCA_REFACTORED)
#include "CFDeviceServer.h"
#else
#include "CFServer.h"
#endif

11/30/2011

Page 10

SCA Servant Impact (cont'd)
 If a component servant implementation is supporting the

optional Component Un-Registration Units of Functionality
(UOF) then an additional include is needed for the
un-registration behavior as follows:

#if defined(SCA_REFACTORED)
#include "CFDeviceServer.h“
#include “CFFullComponentRegistryClient.h”
#else
#include "CFServer.h"
#endif

11/30/2011

Page 11

SCA Re-Factored Benefit
 Size benefit achieved by Operating Systems (OS) supporting

separate process address space with static linking instead of
a flat/single address space, allowing components to be in
separate process address spaces.
– Examples of OS process address space:

 Green Hills Integrity
 LYNUXWORKS LynxOS RTOS
 Wind River VxWorks Real -Time Process (RTP)
 Linux

11/30/2011

Page 12

Conditional Resource Interfaces

11/30/2011

class Resource

«interface»
Resource

«interface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

«interface»
ComponentIdentifier

+ identifier: string

INTERROGABLE
«interface»

PortAccessor

+ connectUsesPorts(Connections) : void
+ disconnectPorts(Disconnections) : void
+ getProvidesPorts(Connections*) : void

CONNECTABLE

«interface»
PropertySet

+ configure(Properties) : void
+ query(Properties*) : void

CONFIGURABLE

«interface»
TestableObject

+ runTest(unsigned long, Properties*) : void

TESTABLE

«interface»
ControllableComponent

+ started: boolean

+ start() : void
+ stop() : void

CONTROLLABLE

Page 13

SCA Re-Factored Benefit (cont'd)
 Size Measurements based upon ARM processor and GNU

4.1.2 compiler
– Full SCA Resource Size with uses ports

 Minimum of 300 kilobytes in savings depending on component type
 More for Resource type and less for an Executable Device type

 Better Assurance using a Least Privilege design pattern
 Direct support to the optional Units of Functionality (UOF)

11/30/2011

Page 14 11/30/2011

SCA Component IDL Impacts
 Component Registration Impacts
 Resource Factory Impacts
 Component Ports Impacts

Page 15

SCA Component Registration Impacts
 Component Registration impacts the component’s main code

– If using Re-Factored CF then “include CFComponentRegistryClient.h”
– For Application Component or Platform Service Component

 Replaces the Naming Service code
� Replaces the Naming Service Context and Binding parameters with Component

Registry parameter
� Replaces the code that binds an object to a naming context with the Component

Registry registerComponent operation.

– For Platform Component
 Replaces the Device Manager registration code

� Replaces the Device Manager parameter with Component Registry parameter
� Replaces the Device Manager register operations with the Component Registry

registerComponent operation.

Page 16

SCA Resource Factory Impacts
 Resource Factory replaced by 2 interfaces with similar

behavior but different operations:
– Component Factory

 ComponentFactory inherits Lifecycle
� Provides consistent behavior for component deployment.

» Initialize – new behavior
� Lifecycle::releaseObject replaces shutdown operation that provides a consistent

behavior for component teardown.

 Create component operation returns a ComponentType instead of a
Resource object reference.

– Component Manager
 Extends Component Factory with component release and getComponent

capability.

 Component Factory now applies to both application and
platform component deployment.

Page 17

SCA Resource Factory Impacts (cont’d)

<i>
CF::Lifecycle

<i>
CF::ComponentFactory

INTERROGATABLE

0..1

1 1

1

<i>
CF::ComponentIdentifier
identifier

createComponent()

 <i>
CF::ComponentManager

getComponent()
releaseComponent()

<i>
CF::ResourceFactory

identifier

createResoruce()
releaseResource()
shutdown()

Page 18

 No “Uses Port” CORBA Objects (CF::Port interface)
 Provides Ports Lifecycle

Lifecycle Description Registered

component creation

initialize

getProvidesPorts

disconnectPorts

releaseObject

Obtainable

Port Creation

Port Release

Note: Registered provides port lifecycle matches that of the
component. This is restricted because a registered provides
port must be registered with the component and is not retrieved
through getProvidesPort or released through disconnectPorts.

Note: Component
registration occurs
after creation, but
before initialize

Note: If the Port was not released
previously through disconnectPorts,
then releaseObject trumps all

Note: Not restricted, but also consider either
registering the port with the component, or
keeping it obtainable and creating it during
getProvidesPort

Note: If registered port creation
encounters an error, the initialize
error exception could be thrown.

Component Ports Impacts

1Common Object Request Broker Architecture (CORBA) provides a seamless software
bus between heterogeneous processing elements and physical interfaces

Page 19

Component Ports Impacts (cont’d)
 To minimize impact on existing code one could register a

component with no ports registration as is currently done for
a SCA 2.2.2 implementation that is still valid for a SCA Next
implementation

 To speed up deployment one can modify existing code to
register ports upon component registration, which may result
in modifying existing code as follows:
– If ports are created and activated on Lifecycle::initialize operation then

this code would have to be moved to component servant constructor
behavior or a new operation that is called by the main code.

– Need to add code to main to retrieve the ports from the component
servant. One could use the PortAccessor::getProvidedPorts operation
for this retrieval or a different servant operation.

Page 20

Component Ports Impacts (cont'd)
 To minimize impact, the same “uses” and “provides” port

design patterns used for SCA 2.2.2 can still be used with the
component servant’s Port Accessor operations.

 The Port Accessor operations can be a layer on top the
existing port classes.
– For example, the connect and disconnect operations can delegate to

uses port classes
– The getProvidedPorts operation mimics the SCA 2.2.2

PortSupplier::getPort operation without SCA 2.2.2 uses ports (CF::port)

 SCA 2.2.2 Uses Port changes from a CORBA object
(CF::Port) to a regular cpp class.

Page 21

Any GPP
CF

WF

OE

App
Factory

Uses
Port AC Device Provides

Port

Any GPP
CF

WF

OE

App
Factory AC Device Provides

Port

Registered Provides Port Connection

SCA v2.2.2 Proposed SCA Next

4. getPort(Name)

6. getPort(Name)

8. connectPort(ConnectionID, Provides Port)

9. disconnectPort(ConnectionID)

5. return(Uses Port)

3. Create

7. return(Provides Port)

1. Create

4. disconnectPorts(ConnectionID)

1. Create Note: SCA v2.2.2
requires several
calls to establish a
given port
connection.

Note: Through direct provides port
registration and the PortAccessor, SCA
Next greatly reduces the amount of calls
necessary to establish a port connection.

3. connectUsesPorts(ConnectionID, Uses Name, Provides Port)

2. registerDevice() 2. registerComponent(Provides Port)

Note: In this example, the
Provides Port is registered
with the Device

Page 22

Any GPP
CF

WF

OE

App
Factory AC Device Provides

Port

Any GPP
CF

WF

OE

App
Factory

Uses
Port AC Device Provides

Port

Obtainable Provides Port Connection

SCA v2.2.2 Proposed SCA Next

6. disconnectPorts(ConnectionID, Uses Name)

3. Create

2. getProvidesPorts(ConnectionID, Provides Name)

4. return(Provides Port)

5. connectUsesPorts(ConnectionID, Uses Name, Provides Port)

7. disconnectPorts(ConnectionID, Provides Name)

8. Teardown

1. registerComponent()

3. getPort(Name)

5. getPort(Name)

8. connectPort(ConnectionID, Provides Port)

9. disconnectPort(ConnectionID)

4. return(Uses Port)

2. Create

7. return(Provides Port)

6. Create

1. registerDevice()

Note: No provides port equivalent to
“disconnectPort” to signal when a
“Obtainable” port can be cleaned up Note: When the provides port is obtained

through getPort, releasePort is called to
indicate the connection is terminated.

Note: getPort is only called
to obtain a provides port
that had not been provided
during registration.

Note: In this example, the
Provides Port is not registered
with the Device and must
therefore be “Obtainable”

Page 23 11/30/2011

SCA CORBA Profiles Impacts
 CORBA Profiles Observations
 How does CORBA compare to MHAL?
 CORBA and MHAL Approaches Comparisons

Page 24

CORBA Profiles Observations
 Evaluated on ARM GPP, TI C674x DSP, and Xilinx Virtex 6

FPGA processing elements using Prismtech CORBA ORB
products
– For DSP, a lightweight (LW) Resource component without Property Set

and Testable Object interfaces was used, resulting in a larger code size
and more memory usage than non-CORBA implementation

– For FPGA, component with provides interfaces and uses port.

Prismtech CPP eORB

Physical Interfaces

Prismtech C eORB Prismtech ICO

Xilinx Virtex 6 TI C674X DSP ARM GPP
SCA LW Resource SCA LW Resource SCA Resource

Physical Transports Physical Transports Physical Transports

Page 25

CORBA Profiles Observations (cont’d)
 The technology is viable beyond the GPP.
 Expect a learning curve for both software and hardware signal processing

engineers.
– CORBA and SCA Modeling tools can reduce development time by

 Eliminating development time implementing internal message protocols for
communication between processing elements

 Eliminating development time implementing SCA Resource and Device infrastructure
requirements

 The main impact is the transition of legacy code that used the MHAL
approach to using CORBA approach
– The cost and schedule to transition from MHAL to CORBA depends on how

well the application defines an interface that abstracts away the MHAL
transport mechanism

– Cost and schedule is also driven by how close one can define a corresponding
CORBA interface that matches an existing application interface to minimize
code changes

Page 26

How does CORBA compare to MHAL?
 This depends on the approach taken for MHAL and for CORBA.

– Modem Hardware Abstraction Layer (MHAL) API Approaches
 MHAL Colocation – in same address space as application
 MHAL non-Colocation – in separate address space from application

– CORBA Approaches
 Not-optimized CORBA – (i.e. GIOP)
 Optimized CORBA – Industry optimized Inter-ORB Protocols (IOP) and minimal

marshaling techniques offers savings over MHAL approaches

Page 27

How does CORBA compare to MHAL? (cont’d)
 Measured Parameters

– Throughput Performance and Latency
 For all approaches, the throughput performance and latency are determined by the

Open Systems Interconnection (OSI) presentation and transport layers, along with the
number of times the OSI layers are traversed

 MHAL Colocation Approach has same OSI Layer behavior as Application CORBA
Client Approaches as illustrated on next slides

 MHAL non-Colocation Approach has more OSI layer behavior as illustrated on next
slides

 For throughput performance and latency comparisons, all approaches are based upon
a non-flat (i.e. multiple addressing spaces/separate process address space) operating
system addressing architecture and same transport, network, data link and physical
interface layers.

Page 28

How does CORBA compare to MHAL? –
MHAL Colocation versus Not-Optimized CORBA

Presentation (forming up protocol)

Session
Transport (copy protocol into transport)

Network (e.g., IP)

Data Link

Physical (Ethernet, Shared Memory, PCIe, etc.)

OSI Layers

Less Time

1. MHAL Colocation Approach has the same OSI Layer behavior as Application CORBA Client
2. If application for MHAL Colocation Approach is just a proxy middleman to move data for a CORBA-

nonCORBA communication then CORBA Approach would be better since it would be similar to MHAL non-
Colocation Approach

3. CORBA Approach can provide Quality of Service (QoS) unlike MHAL Approach (i.e. message priority)
4. CORBA Approach can provide tool support unlike MHAL Approach (i.e. interface and SCA code generation)

MHAL (smaller and less marshaling time)
Application forms MHAL Protocol

GIOP (larger and ORB marshaling time)
ORB forms GIOP

MHAL Colocation Approach
Application (application business logic)

less time since protocol is smaller

Not-Optimized CORBA Approach

more time since protocol is bigger

More Time

Page 29

How does CORBA compare to MHAL? –
MHAL Colocation versus Optimized CORBA

Presentation (forming up protocol)

Session
Transport (copy protocol into transport)

Network (e.g., IP)

Data Link

Physical (Ethernet, Shared Memory, PCIe, etc.)

OSI Layers

More Time

MHAL (larger and more marshaling time)
Application forms MHAL Protocol

Optimized IOP (less marshaling time)
ORB forms protocol

MHAL Colocation Approach
Application (application business logic)

more time since protocol is larger

Optimized CORBA Approach

less time since protocol is smaller

Less Time

1. Same notes as MHAL Colocation Approach versus Not-optimized CORBA Approach

Page 30

MHAL non-
Colocation Approach

Application (CORBA Objects
and application business logic)

Separate Address
Space

Application Client
Process

How does CORBA compare to MHAL? –
MHAL non-Colocation Illustration

Presentation (protocol
marshaling and unmarshaling)

Session

Transport
(e.g., TCP, Shared Memory)

Network (e.g., IP)

Data Link

Physical (Ethernet, Shared
Memory, PCIe, etc.)

OSI Layers

Copy of user
data into MHAL
protocol

Copy of Protocol
into Transport

Copy of protocol data
into application user
data (may be a shadow
copy)

Copy of Transport
protocol into
Presentation

1. MHAL non-Colocation Approach requires more OSI layers
2. The amount of processing time varies depending on the OS Inter-process

communication (IPC) mechanism being used between Application and MHAL Server

Application

Presentation

Session

Transport

Network

Data Link

Physical IF

OSI Layers

OS IPC More Data Transfer Time

Page 31

CORBA and MHAL Approaches Comparisons
 From Best to Worst for throughput performance and reduced

latency using a high assurance model.
– Optimized CORBA Approach
– MHAL Colocation Approach
– Not-optimized CORBA Approach
– MHAL non-Colocation Approach

Page 32

Domain Profiles Impacts
 The use of XML files within the radio is not explicitly required

by an SCA implementation.
– This was true even for SCA 2.2.2 and is still true for SCA Next.

 The minimum requirements for XML are the profile attributes
for components:
– Application
– Application Factory
– Device Manager
– Domain Manager
– Device, Executable Device and Loadable Device

 Profile attributes are optional for a Device and Device
Manager components that corresponds to the optional UOF
INTERROGABLE.

Page 33

Domain Profiles Impacts (cont'd)
 Application (Software Assembly Descriptor)

– Nested Applications – optional for CF implementation and number of nested
levels supported is not stipulated

– Domain Finder Extensions for connecting to an Application
– Deployment Dependencies
– Removed FindBy – related to the removal of Naming Service

 Software Component Descriptor (SCD)
– Uses Port maximum number of connections and Component Type

 Software Package Descriptor
– Added Lightweight AEPs

 Device Manager Configuration Descriptor (DCD)
– Domain Finder service extensions is also applicable for DCD
– Any type of Device’s allocation property can be overridden in the DCD.

 Properties
– Structure Sequence does not have to have initial values.

 ID – are not required to be UUID but required to be unique within domain.
 Profile Descriptor - removed

Page 34 11/30/2011

CF Implementation Impacts
 Component Registration
 Manager Registration
 Application Factory and Application Manager Impacts
 Managers Optional UOFs

Page 35 11/30/2011

CF Implementation Impacts –
Component Registration
 Application Factory Component/Application Manager

– Removal of the Naming Service
– Replaced by Component Registry CORBA object

 Implementation specific on number of Component Registry objects.

 Device Manager Component
– Registration and unregistration operations removed from Device

Manager.
– Replaced by a Component Registry CORBA object.

Page 36

Application Factory Component Registration

1. Create()

3. Load & Execute(ComponentRegistry)

3.1

2. Create

4.1

5.1

1. Create()

2. Load & Execute(NamingService)

2.1

4. bind

6. bind

3. Resolve

5. Resolve

7. Resolve

4. registerComponent

5. registerComponent

Note: In SCA v2.2.2, the AppFactory must
poll the Naming Service to discover when
Application Components become available

In SCA v2.2.2, a Naming Service is
used and shared with Application
Components for the purposes of

registration.

In SCA Next, a standalone
Component Registry interface is

shared with Application components
to be used for registration.

Note: SCA Next follows the push model
and has Application Components explicitly
register with the ApplicationFactory.

Note: The creation
of the Component
Registry (2) and
how it shares
component
registration with
the rest of the
AppFactory (4.1,
5.1) is shown here
for clarity, but is
not spec’ed as part
of the SCA.

Any GPP
CF

App
Factory

WF

Comp B AC Component
Registry

Any GPP
CF

App
Factory

WF

Comp B AC

OE

Naming
Service

Page 37

Device Manager Component Registration

Any GPP
CF

Device
Manager

OE

Device A Component
Registry

2. Create

1. Process
DCD

OE

Service A

Any GPP
CF

Device
Manager

OE

Device A

6.1 Initialize & Configure

1. Process
DCD

2. Load & Execute(DeviceManager)

3. Load & Execute(DeviceManager)

5. registerService

6. Initialize & Configure

OE

Service A

4. registerDevice

4. registerComponent(type=DEVICE)
4.1

5.1

6.1 Initialize & Configure

In SCA v2.2.2, the entire
DeviceManager interface was

provided to each OE component for
the purposes of registration.

: In SCA Next, only the separate
Component Registry interface is

shared with OE components for the
purposes of registration.

Note: The
creation of the
Component
Registry (2) and
how it shares
component
registration with
the rest of the
DeviceManager
(4.1, 5.1) is
shown here for
clarity, but should
not be spec’ed as
part of the SCA.

3.1 Load & Execute(ComponentRegistry)

5. registerComponent(type=SERVICE)

6. Initialize & Configure

3. Load & Execute(ComopnentRegistry)

Note: A type attribute signifies whether the registering
component is a DEVICE or SERVICE. This is needed
since the registration behavior is slightly different (e.g.
Services are added to Domain Finder and Devices are not.

Page 38 11/30/2011

CF Implementation Impacts – Manager
Registration
 Device Manager Registration

– Obtaining Domain Manager Object Reference
 Use of Naming Service not required
 Domain Manager object reference can be:

� CORBALOC string
� IOR string
� Object Reference can be in a file

– Registration to Domain Manager is now done by Manager Registry interface

Page 39 11/30/2011

CF Implementation Impacts – Application
Factory and Application Manager
 Optional Nested Application UOF

– The maximum number of nested applications supported is not specified
in SCA

– Minimum of one when Nested Application UOF is implemented

 Deployment Dependencies
– Overriding component deployment dependencies at the SAD and

Application Factory create level.
 Added deploymentDependencies parameter to Application Factory::create

operation.

Page 40 11/30/2011

CF Implementation Impacts – Managers
Optional UOFs
 Device Manager Optional UOFs

– Management Releasable provides the device manager releasing capability
 Device and Domain Managers Optional UOFs

– Management Registration provides the registry interfaces for registering
components to domain and device manager components capability

– Management Un-Registration provides the un-registry interfaces for
unregistering components from domain and device manager components
capability

 Domain Manager Optional UOFs
– Application Installable provides capability for dynamic application installation

and un-installation
– Channel Extension provides the concepts of platform channels and deployment

of applications onto platform channels capability
– Event Channel provides event channels and the event service capability in the

SCA OE

Page 41

Summary
 The use of SCA Model Driven Development tools can off

load the transition from SCA 2.2.2 to SCA Next for:
– SCA Component Infrastructure and SCA requirements

 Component Registration impacts
 Component Ports impacts
 Component Mains
 Optional UOF

 CORBA is viable technology beyond GPP
 Use of Re-Factored SCA CF IDL can reduce your code size

and time for development.

	SCA Next Lessons Learned and Impact Analysis
	Agenda
	SCA Re-Factored CF IDL Impacts
	SCA Re-Factored CF IDL Interfaces
	SCA Core Framework Interfaces
	SCA Affected Components
	SCA Component Hierarchy
	SCA Servant Impact
	SCA Servant Impact (cont'd)
	SCA Servant Impact (cont'd)
	SCA Re-Factored Benefit
	Conditional Resource Interfaces
	SCA Re-Factored Benefit (cont'd)
	SCA Component IDL Impacts
	SCA Component Registration Impacts
	SCA Resource Factory Impacts
	SCA Resource Factory Impacts (cont’d)
	Component Ports Impacts
	Component Ports Impacts (cont’d)
	Component Ports Impacts (cont'd)
	Slide Number 21
	Slide Number 22
	SCA CORBA Profiles Impacts
	CORBA Profiles Observations
	CORBA Profiles Observations (cont’d)
	How does CORBA compare to MHAL?
	How does CORBA compare to MHAL? (cont’d)
	How does CORBA compare to MHAL? –�MHAL Colocation versus Not-Optimized CORBA
	How does CORBA compare to MHAL? –�MHAL Colocation versus Optimized CORBA
	How does CORBA compare to MHAL? –�MHAL non-Colocation Illustration
	CORBA and MHAL Approaches Comparisons
	Domain Profiles Impacts
	Domain Profiles Impacts (cont'd)
	CF Implementation Impacts
	CF Implementation Impacts – Component Registration
	Slide Number 36
	Slide Number 37
	CF Implementation Impacts – Manager Registration
	CF Implementation Impacts – Application Factory and Application Manager
	CF Implementation Impacts – Managers Optional UOFs
	Summary

